LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

THIRD SEMESTER – NOVEMBER 2013

MT 3501/MT 3500 - ALGEBRA, CALCULUS AND VECTOR ANALYSIS

Date : 06/11/2013 Time : 9:00 - 12:00 Dept. No.

Max.: 100 Marks

<u> PART – A</u>

$(10 \times 2 = 20)$

- 1. Evaluate $\int_0^1 \int_0^1 \int_0^1 dx \, dy \, dz$.
- 2. Define Beta and Gamma function.
- 3. Form a partial differential equation by eliminating a and b from $z=ax +by +a^2 + b^2$.
- 4. Solve pq=1.

Answer ALL questions:

- 5. For, $\varphi = x^2 + y z 1$ find $\nabla \varphi$ at (1,0, 0).
- 6. Show that the vector $\vec{F} = 3y^4 z^2 \vec{i} + 4x^3 z^2 \vec{j} 3x^2 y^2 \vec{k}$ is solenoidal.
- 7. Find L $(3e^{5t} + 5 \cos t)$
- 8. Find L⁻¹ ($\frac{2s}{s^2+25} + \frac{1}{s^3}$)

9. Find $\varphi(729)$.

10. State Fermat's theorem.

<u>PART – B</u>

Answer any FIVE questions:

 $(5 \times 8 = 40)$

11. Evaluate by changing the order of the integration $\int_{-a}^{a} \int_{0}^{\sqrt{a^2-y^2}} x \, dx \, dy$.

- 12. Express $\int_{0}^{1} x^{m} (1-x^{n})^{p} dx$ in terms Gamma functions 13. Solve $x^{2}p^{2} + y^{2}q^{2} = z^{2}$.
- 14. Solve $y^2p + x^2q = x^2y^2z^2$.

- 15. Find (i) $L(t \sin^2 t)$ (ii) $L(a\cos^4 t)$.
- 16. Find $L^{-1}(\frac{s-1}{2s^2+s+6})$.
- 17. Prove that if $\vec{r} = x\vec{\iota} + y\vec{j} + z\vec{l} show that \nabla \times (r^n\vec{r}) = 0.$
- 18. Show that 8 th power of any number is of the form $17m \text{ or } 17m \pm 1$.

<u>PART – C</u>

Answer any THREE questions:

 $(2 \times 20 = 40)$

- 19. (a) Evaluate $\iint xyz \, dz \, dy \, dx$ taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$.
 - (b) Show that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.

20. (a) Obtain the complete and singular solution of $\frac{z}{pq} = \frac{x}{q} + \frac{y}{p} + \sqrt{pq}$.

- (b) Solve $(x^2 yz)p + (y^2 zx)q = z^2 xy$
- 21 (a) Verify Gauss divergence theorem for $\overline{F} = x\hat{i} + y\hat{j} + z\hat{k}$ taken over the region bounded by the planes x = 0, x = a, y = 0, y = a, z = 0 and z = a.
 - (b) Show that 18!+1 is divisible by 437. (12+8)
- 22. Using Laplace transform solve $\frac{d^2y}{dt^2} + 4\frac{dy}{dx} + 13y = 2e^{-t}$ given that y = 0; $\frac{dy}{dt} = 1$ when t = 0.

\$\$\$\$\$\$\$